Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Epileptic Disord ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669007

RESUMEN

OBJECTIVE: To assess the effectiveness of an educational program leveraging technology-enhanced learning and retrieval practice to teach trainees how to correctly identify interictal epileptiform discharges (IEDs). METHODS: This was a bi-institutional prospective randomized controlled educational trial involving junior neurology residents. The intervention consisted of three video tutorials focused on the six IFCN criteria for IED identification and rating 500 candidate IEDs with instant feedback either on a web browser (intervention 1) or an iOS app (intervention 2). The control group underwent no educational intervention ("inactive control"). All residents completed a survey and a test at the onset and offset of the study. Performance metrics were calculated for each participant. RESULTS: Twenty-one residents completed the study: control (n = 8); intervention 1 (n = 6); intervention 2 (n = 7). All but two had no prior EEG experience. Intervention 1 residents improved from baseline (mean) in multiple metrics including AUC (.74; .85; p < .05), sensitivity (.53; .75; p < .05), and level of confidence (LOC) in identifying IEDs/committing patients to therapy (1.33; 2.33; p < .05). Intervention 2 residents improved in multiple metrics including AUC (.81; .86; p < .05) and LOC in identifying IEDs (2.00; 3.14; p < .05) and spike-wave discharges (2.00; 3.14; p < .05). Controls had no significant improvements in any measure. SIGNIFICANCE: This program led to significant subjective and objective improvements in IED identification. Rating candidate IEDs with instant feedback on a web browser (intervention 1) generated greater objective improvement in comparison to rating candidate IEDs on an iOS app (intervention 2). This program can complement trainee education concerning IED identification.

2.
Epilepsia ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606580

RESUMEN

OBJECTIVE: Recently, a deep learning artificial intelligence (AI) model forecasted seizure risk using retrospective seizure diaries with higher accuracy than random forecasts. The present study sought to prospectively evaluate the same algorithm. METHODS: We recruited a prospective cohort of 46 people with epilepsy; 25 completed sufficient data entry for analysis (median = 5 months). We used the same AI method as in our prior study. Group-level and individual-level Brier Skill Scores (BSSs) compared random forecasts and simple moving average forecasts to the AI. RESULTS: The AI had an area under the receiver operating characteristic curve of .82. At the group level, the AI outperformed random forecasting (BSS = .53). At the individual level, AI outperformed random in 28% of cases. At the group and individual level, the moving average outperformed the AI. If pre-enrollment (nonverified) diaries (with presumed underreporting) were included, the AI significantly outperformed both comparators. Surveys showed most did not mind poor-quality LOW-RISK or HIGH-RISK forecasts, yet 91% wanted access to these forecasts. SIGNIFICANCE: The previously developed AI forecasting tool did not outperform a very simple moving average forecasting in this prospective cohort, suggesting that the AI model should be replaced.

3.
medRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559062

RESUMEN

BACKGROUND: Multi-center electronic health records (EHR) can support quality improvement initiatives and comparative effectiveness research in stroke care. However, limitations of EHR-based research include challenges in abstracting key clinical variables from non-structured data at scale. This is further compounded by missing data. Here we develop a natural language processing (NLP) model that automatically reads EHR notes to determine the NIH stroke scale (NIHSS) score of patients with acute stroke. METHODS: The study included notes from acute stroke patients (>= 18 years) admitted to the Massachusetts General Hospital (MGH) (2015-2022). The MGH data were divided into training (70%) and hold-out test (30%) sets. A two-stage model was developed to predict the admission NIHSS. A linear model with the least absolute shrinkage and selection operator (LASSO) was trained within the training set. For notes in the test set where the NIHSS was documented, the scores were extracted using regular expressions (stage 1), for notes where NIHSS was not documented, LASSO was used for prediction (stage 2). The reference standard for NIHSS was obtained from Get With The Guidelines Stroke Registry. The two-stage model was tested on the hold-out test set and validated in the MIMIC-III dataset (Medical Information Mart for Intensive Care-MIMIC III 2001-2012) v1.4, using root mean squared error (RMSE) and Spearman correlation (SC). RESULTS: We included 4,163 patients (MGH = 3,876; MIMIC = 287); average age of 69 [SD 15] years; 53% male, and 72% white. 90% patients had ischemic stroke and 10% hemorrhagic stroke. The two-stage model achieved a RMSE [95% CI] of 3.13 [2.86-3.41] (SC = 0.90 [0.88-0. 91]) in the MGH hold-out test set and 2.01 [1.58-2.38] (SC = 0.96 [0.94-0.97]) in the MIMIC validation set. CONCLUSIONS: The automatic NLP-based model can enable large-scale stroke severity phenotyping from EHR and therefore support real-world quality improvement and comparative effectiveness studies in stroke.

4.
medRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562831

RESUMEN

Importance: The analysis of electronic medical records at scale to learn from clinical experience is currently very challenging. The integration of artificial intelligence (AI), specifically foundational large language models (LLMs), into an analysis pipeline may overcome some of the current limitations of modest input sizes, inaccuracies, biases, and incomplete knowledge bases. Objective: To explore the effectiveness of using an LLM for generating realistic clinical data and other LLMs for summarizing and synthesizing information in a model system, simulating a randomized clinical trial (RCT) in epilepsy to demonstrate the potential of inductive reasoning via medical chart review. Design: An LLM-generated simulated RCT based on a RCT for treatment with an antiseizure medication, cenobamate, including a placebo arm and a full-strength drug arm, evaluated by an LLM-based pipeline versus a human reader. Setting: Simulation based on realistic seizure diaries, treatment effects, reported symptoms and clinical notes generated by LLMs with multiple different neurologist writing styles. Participants: Simulated cohort of 240 patients, divided 1:1 into placebo and drug arms. Intervention: Utilization of LLMs for the generation of clinical notes and for the synthesis of data from these notes, aiming to evaluate the efficacy and safety of cenobamate in seizure control either with a human evaluator or AI-pipeline. Measures: The AI and human analysis focused on identifying the number of seizures, symptom reports, and treatment efficacy, with statistical analysis comparing the 50%-responder rate and median percentage change between the placebo and drug arms, as well as side effect rates in each arm. Results: AI closely mirrored human analysis, demonstrating the drug's efficacy with marginal differences (<3%) in identifying both drug efficacy and reported symptoms. Conclusions and Relevance: This study showcases the potential of LLMs accurately simulate and analyze clinical trials. Significantly, it highlights the ability of LLMs to reconstruct essential trial elements, identify treatment effects, and recognize reported symptoms, within a realistic clinical framework. The findings underscore the relevance of LLMs in future clinical research, offering a scalable, efficient alternative to traditional data mining methods without the need for specialized medical language training.

5.
J Alzheimers Dis ; 98(1): 209-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393904

RESUMEN

Background: Fractal motor activity regulation (FMAR), characterized by self-similar temporal patterns in motor activity across timescales, is robust in healthy young humans but degrades with aging and in Alzheimer's disease (AD). Objective: To determine the timescales where alterations of FMAR can best predict the clinical onset of AD. Methods: FMAR was assessed from actigraphy at baseline in 1,077 participants who had annual follow-up clinical assessments for up to 15 years. Survival analysis combined with deep learning (DeepSurv) was used to examine how baseline FMAR at different timescales from 3 minutes up to 6 hours contributed differently to the risk for incident clinical AD. Results: Clinical AD occurred in 270 participants during the follow-up. DeepSurv identified three potential regions of timescales in which FMAR alterations were significantly linked to the risk for clinical AD: <10, 20-40, and 100-200 minutes. Confirmed by the Cox and random survival forest models, the effect of FMAR alterations in the timescale of <10 minutes was the strongest, after adjusting for covariates. Conclusions: Subtle changes in motor activity fluctuations predicted the clinical onset of AD, with the strongest association observed in activity fluctuations at timescales <10 minutes. These findings suggest that short actigraphy recordings may be used to assess the risk of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/complicaciones , Envejecimiento , Actividad Motora
6.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366862

RESUMEN

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Convulsiones/diagnóstico , Convulsiones/terapia , Epilepsia/diagnóstico , Electroencefalografía/métodos
7.
Front Neurosci ; 18: 1330556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332856

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by diverse clinical features. EEG biomarkers such as spectral power and functional connectivity have emerged as potential tools for enhancing early diagnosis and understanding of the neural processes underlying ASD. However, existing studies yield conflicting results, necessitating a comprehensive, data-driven analysis. We conducted a retrospective cross-sectional study involving 246 children with ASD and 42 control children. EEG was collected, and diverse EEG features, including spectral power and spectral coherence were extracted. Statistical inference methods, coupled with machine learning models, were employed to identify differences in EEG features between ASD and control groups and develop classification models for diagnostic purposes. Our analysis revealed statistically significant differences in spectral coherence, particularly in gamma and beta frequency bands, indicating elevated long range functional connectivity between frontal and parietal regions in the ASD group. Machine learning models achieved modest classification performance of ROC-AUC at 0.65. While machine learning approaches offer some discriminative power classifying individuals with ASD from controls, they also indicate the need for further refinement.

8.
medRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370813

RESUMEN

Background: Benzodiazepine use in older adults following acute ischemic stroke (AIS) is common, yet short-term safety concerning falls or fall-related injuries remains unexplored. Methods: We emulated a hypothetical randomized trial of benzodiazepine use during the acute post stroke recovery period to assess incidence of falls or fall related injuries in older adults. Using linked data from the Get With the Guidelines Registry and Mass General Brigham's electronic health records, we selected patients aged 65 and older admitted for Acute Ischemic Stroke (AIS) between 2014 and 2021 with no documented prior stroke and no benzodiazepine prescriptions in the previous 3 months. Potential for immortal-time and confounding biases was addressed via separate inverse-probability weighting strategies. Results: The study included 495 patients who initiated inpatient benzodiazepines within three days of admission and 2,564 who did not. After standardization, the estimated 10-day risk of falls or fall-related injuries was 694 events per 1000 (95% confidence interval CI: 676-709) for the benzodiazepine initiation strategy and 584 events per 1000 (95% CI: 575-595) for the non-initiation strategy. Subgroup analyses showed risk differences of 142 events per 1000 (95% CI: 111-165) and 85 events per 1000 (95% CI: 64-107) for patients aged 65 to 74 years and for those aged 75 years or older, respectively. Risk differences were 187 events per 1000 (95% CI: 159-206) for patients with minor (NIHSS≤ 4) AIS and 32 events per 1000 (95% CI: 10-58) for those with moderate-to-severe AIS. Conclusions: Initiating inpatient benzodiazepines within three days of AIS is associated with an elevated 10-day risk of falls or fall-related injuries, particularly for patients aged 65 to 74 years and for those with minor strokes. This underscores the need for caution with benzodiazepines, especially among individuals likely to be ambulatory during the acute and sub-acute post-stroke period.

9.
Mol Cell Neurosci ; 128: 103918, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296121

RESUMEN

One of the early markers of minimal hepatic encephalopathy (MHE) is the disruption of alpha rhythm observed in electroencephalogram (EEG) signals. However, the underlying mechanisms responsible for this occurrence remain poorly understood. To address this gap, we develop a novel biophysical model MHE-AWD-NCM, encompassing the communication dynamics between a cortical neuron population (CNP) and an astrocyte population (AP), aimed at investigating the relationship between alpha wave disturbance (AWD) and mechanistical principles, specifically concerning astrocyte-neuronal communication in the context of MHE. In addition, we introduce the concepts of peak power density and peak frequency within the alpha band as quantitative measures of AWD. Our model faithfully reproduces the characteristic EEG phenomenology during MHE and shows how impairments of communication between CNP and AP could promote AWD. The results suggest that the disruptions in feedback neurotransmission from AP to CNP, along with the inhibition of GABA uptake by AP from the extracellular space, contribute to the observed AWD. Moreover, we found that the variation of external excitatory stimuli on CNP may play a key role in AWD in MHE. Finally, the sensitivity analysis is also performed to assess the relative significance of above factors in influencing AWD. Our findings align with the physiological observations and provide a more comprehensive understanding of the complex interplay of astrocyte-neuronal communication that underlies the AWD observed in MHE, which potentially may help to explore the targeted therapeutic interventions for the early stage of hepatic encephalopathy.


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/tratamiento farmacológico , Ritmo alfa , Electroencefalografía , Neuronas
10.
medRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260666

RESUMEN

OBJECTIVE: Recently, a deep learning AI model forecasted seizure risk using retrospective seizure diaries with higher accuracy than random forecasts. The present study sought to prospectively evaluate the same algorithm. METHODS: We recruited a prospective cohort of 46 people with epilepsy; 25 completed sufficient data entry for analysis (median 5 months). We used the same AI method as in our prior study. Group-level and individual-level Brier Skill Scores (BSS) compared random forecasts and simple moving average forecasts to the AI. RESULTS: The AI had an AUC of 0.82. At the group level, the AI outperformed random forecasting (BSS=0.53). At the individual level, AI outperformed random in 28% of cases. At the group and individual level, the moving average outperformed the AI. If pre-enrollment (non-verified) diaries (with presumed under-reporting) were included, the AI significantly outperformed both comparators. Surveys showed most did not mind poor quality LOW-RISK or HIGH-RISK forecasts, yet 91% wanted access to these forecasts. SIGNIFICANCE: The previously developed AI forecasting tool did not outperform a very simple moving average forecasting this prospective cohort, suggesting that the AI model should be replaced.

11.
Neurol Clin Pract ; 14(1): e200225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38173542

RESUMEN

Background and Objectives: Patterns of electrical activity in the brain (EEG) during sleep are sensitive to various health conditions even at subclinical stages. The objective of this study was to estimate sleep EEG-predicted incidence of future neurologic, cardiovascular, psychiatric, and mortality outcomes. Methods: This is a retrospective cohort study with 2 data sets. The Massachusetts General Hospital (MGH) sleep data set is a clinic-based cohort, used for model development. The Sleep Heart Health Study (SHHS) is a community-based cohort, used as the external validation cohort. Exposure is good, average, or poor sleep defined by quartiles of sleep EEG-predicted risk. The outcomes include ischemic stroke, intracranial hemorrhage, mild cognitive impairment, dementia, atrial fibrillation, myocardial infarction, type 2 diabetes, hypertension, bipolar disorder, depression, and mortality. Diagnoses were based on diagnosis codes, brain imaging reports, medications, cognitive scores, and hospital records. We used the Cox survival model with death as the competing risk. Results: There were 8673 participants from MGH and 5650 from SHHS. For all outcomes, the model-predicted 10-year risk was within the 95% confidence interval of the ground truth, indicating good prediction performance. When comparing participants with poor, average, and good sleep, except for atrial fibrillation, all other 10-year risk ratios were significant. The model-predicted 10-year risk ratio closely matched the observed event rate in the external validation cohort. Discussion: The incidence of health outcomes can be predicted by brain activity during sleep. The findings strengthen the concept of sleep as an accessible biological window into unfavorable brain and general health outcomes.

12.
Sleep ; 47(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37950486

RESUMEN

STUDY OBJECTIVES: To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships between brain physiology, structure, and cognition. METHODS: We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural network-based tool, provided high-quality segmentations despite noise. A priori hypotheses explored associations between brain function (measured by PSG) and brain structure (measured by MRI). Associations with cognitive scores and dementia status were studied. An exploratory data-driven approach investigated age-structure-physiology-cognition links. RESULTS: Six hundred and twenty-three patients with sleep PSG and brain MRI data were included in this study; 160 with cognitive evaluations. Three hundred and forty-two participants (55%) were female, and age interquartile range was 52 to 69 years. Thirty-six individuals were diagnosed with dementia, 71 with mild cognitive impairment, and 326 with major depression. One hundred and fifteen individuals were evaluated for insomnia and 138 participants had an apnea-hypopnea index equal to or greater than 15. Total PSG delta power correlated positively with frontal lobe/thalamic volumes, and sleep spindle density with thalamic volume. rapid eye movement (REM) duration and amygdala volume were positively associated with cognition. Patients with dementia showed significant differences in five brain structure volumes. REM duration, spindle, and slow-oscillation features had strong associations with cognition and brain structure volumes. PSG and MRI features in combination predicted chronological age (R2 = 0.67) and cognition (R2 = 0.40). CONCLUSIONS: Routine clinical data holds extended value in understanding and even clinically using brain-sleep-cognition relationships.


Asunto(s)
Demencia , Sueño , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Sueño/fisiología , Encéfalo/diagnóstico por imagen , Cognición , Sueño REM/fisiología
13.
JMIR AI ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090533

RESUMEN

Background: Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully annotated electroencephalogram (EEG) data. However, effectively using a large amount of raw EEG data remains a challenge. Objective: In this study, we aim to learn robust vector representations from massive unlabeled EEG signals, such that the learned vectorized features (1) are expressive enough to replace the raw signals in the sleep staging task, and (2) provide better predictive performance than supervised models in scenarios involving fewer labels and noisy samples. Methods: We propose a self-supervised model, Contrast with the World Representation (ContraWR), for EEG signal representation learning. Unlike previous models that use a set of negative samples, our model uses global statistics (ie, the average representation) from the data set to distinguish signals associated with different sleep stages. The ContraWR model is evaluated on 3 real-world EEG data sets that include both settings: at-home and in-laboratory EEG recording. Results: ContraWR outperforms 4 recently reported self-supervised learning methods on the sleep staging task across 3 large EEG data sets. ContraWR also supersedes supervised learning when fewer training labels are available (eg, 4% accuracy improvement when less than 2% of data are labeled on the Sleep EDF data set). Moreover, the model provides informative, representative feature structures in 2D projection. Conclusions: We show that ContraWR is robust to noise and can provide high-quality EEG representations for downstream prediction tasks. The proposed model can be generalized to other unsupervised physiological signal learning tasks. Future directions include exploring task-specific data augmentations and combining self-supervised methods with supervised methods, building upon the initial success of self-supervised learning reported in this study.

14.
BMC Health Serv Res ; 23(1): 1234, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950245

RESUMEN

BACKGROUND: Continuous electroencephalography (cEEG) is increasingly utilized in hospitalized patients to detect and treat seizures. Epidemiologic and observational studies using administrative datasets can provide insights into the comparative and cost effectiveness of cEEG utilization. Defining patient cohorts that underwent acute inpatient cEEG from administrative datasets is limited by the lack of validated codes differentiating elective epilepsy monitoring unit (EMU) admissions from acute inpatient hospitalization with cEEG utilization. Our aim was to develop hospital administrative data-based models to identify acute inpatient admissions with cEEG monitoring and distinguish them from EMU admissions. METHODS: This was a single center retrospective cohort study of adult (≥ 18 years old) inpatient admissions with a cEEG procedure (EMU or acute inpatient) between January 2016-April 2022. The gold standard for acute inpatient cEEG vs. EMU was obtained from the local EEG recording platform. An extreme gradient boosting model was trained to classify admissions as acute inpatient cEEG vs. EMU using administrative data including demographics, diagnostic and procedure codes, and medications. RESULTS: There were 9,523 patients in our cohort with 10,783 hospital admissions (8.5% EMU, 91.5% acute inpatient cEEG); with average age of 59 (SD 18.2) years; 46.2% were female. The model achieved an area under the receiver operating curve of 0.92 (95% CI [0.91-0.94]) and area under the precision-recall curve of 0.99 [0.98-0.99] for classification of acute inpatient cEEG. CONCLUSIONS: Our model has the potential to identify cEEG monitoring admissions in larger cohorts and can serve as a tool to enable large-scale, administrative data-based studies of EEG utilization.


Asunto(s)
Pacientes Internos , Convulsiones , Adulto , Humanos , Femenino , Persona de Mediana Edad , Adolescente , Masculino , Estudios Retrospectivos , Convulsiones/diagnóstico , Hospitalización , Monitoreo Fisiológico/métodos , Electroencefalografía/métodos
15.
J Clin Neurophysiol ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37938032

RESUMEN

PURPOSE: Continuous electroencephalography (cEEG) is recommended for hospitalized patients with cerebrovascular diseases and suspected seizures or unexplained neurologic decline. We sought to (1) identify areas of practice variation in cEEG utilization, (2) determine predictors of cEEG utilization, (3) evaluate whether cEEG utilization is associated with outcomes in patients with cerebrovascular diseases. METHODS: This cohort study of the Premier Healthcare Database (2014-2020), included hospitalized patients age >18 years with cerebrovascular diseases (identified by ICD codes). Continuous electroencephalography was identified by International Classification of Diseases (ICD)/Current Procedural Terminology (CPT) codes. Multivariable lasso logistic regression was used to identify predictors of cEEG utilization and in-hospital mortality. Propensity score-matched analysis was performed to determine the relation between cEEG use and mortality. RESULTS: 1,179,471 admissions were included; 16,777 (1.4%) underwent cEEG. Total number of cEEGs increased by 364% over 5 years (average 32%/year). On multivariable analysis, top five predictors of cEEG use included seizure diagnosis, hospitals with >500 beds, regions Northeast and South, and anesthetic use. Top predictors of mortality included use of mechanical ventilation, vasopressors, anesthetics, antiseizure medications, and age. Propensity analysis showed that cEEG was associated with lower in-hospital mortality (Average Treatment Effect -0.015 [95% confidence interval -0.028 to -0.003], Odds ratio 0.746 [95% confidence interval, 0.618-0.900]). CONCLUSIONS: There has been a national increase in cEEG utilization for hospitalized patients with cerebrovascular diseases, with practice variation. cEEG utilization was associated with lower in-hospital mortality. Larger comparative studies of cEEG-guided treatments are indicated to inform best practices, guide policy changes for increased access, and create guidelines on triaging and transferring patients to centers with cEEG capability.

16.
Crit Care Med ; 51(12): 1802-1811, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855659

RESUMEN

OBJECTIVES: To develop the International Cardiac Arrest Research (I-CARE), a harmonized multicenter clinical and electroencephalography database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. DESIGN: Multicenter cohort, partly prospective and partly retrospective. SETTING: Seven academic or teaching hospitals from the United States and Europe. PATIENTS: Individuals 16 years old or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous electroencephalography monitoring were included. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: Clinical and electroencephalography data were harmonized and stored in a common Waveform Database-compatible format. Automated spike frequency, background continuity, and artifact detection on electroencephalography were calculated with 10-second resolution and summarized hourly. Neurologic outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical data and 56,676 hours (3.9 terabytes) of continuous electroencephalography data for 1,020 patients. Most patients died ( n = 603, 59%), 48 (5%) had severe neurologic disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean electroencephalography recording duration depending on the neurologic outcome (range, 53-102 hr for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least 1 hour was seen in 258 patients (25%) (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least 1 hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. CONCLUSIONS: The I-CARE consortium electroencephalography database provides a comprehensive real-world clinical and electroencephalography dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal electroencephalography patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.


Asunto(s)
Coma , Paro Cardíaco , Humanos , Adolescente , Coma/diagnóstico , Estudios Retrospectivos , Estudios Prospectivos , Paro Cardíaco/diagnóstico , Electroencefalografía
17.
BMC Neurol ; 23(1): 359, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803266

RESUMEN

BACKGROUND: Sleep spindle activity is commonly estimated by measuring sigma power during stage 2 non-rapid eye movement (NREM2) sleep. However, spindles account for little of the total NREM2 interval and therefore sigma power over the entire interval may be misleading. This study compares derived spindle measures from direct automated spindle detection with those from gross power spectral analyses for the purposes of clinical trial design. METHODS: We estimated spindle activity in a set of 8,440 overnight electroencephalogram (EEG) recordings from 5,793 patients from the Sleep Heart Health Study using both sigma power and direct automated spindle detection. Performance of the two methods was evaluated by determining the sample size required to detect decline in age-related spindle coherence with each method in a simulated clinical trial. RESULTS: In a simulated clinical trial, sigma power required a sample size of 115 to achieve 95% power to identify age-related changes in sigma coherence, while automated spindle detection required a sample size of only 60. CONCLUSIONS: Measurements of spindle activity utilizing automated spindle detection outperformed conventional sigma power analysis by a wide margin, suggesting that many studies would benefit from incorporation of automated spindle detection. These results further suggest that some previous studies which have failed to detect changes in sigma power or coherence may have failed simply because they were underpowered.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Polisomnografía/métodos , Electroencefalografía/métodos
18.
Neurology ; 101(22): 1010-1018, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37816638

RESUMEN

The integration of natural language processing (NLP) tools into neurology workflows has the potential to significantly enhance clinical care. However, it is important to address the limitations and risks associated with integrating this new technology. Recent advances in transformer-based NLP algorithms (e.g., GPT, BERT) could augment neurology clinical care by summarizing patient health information, suggesting care options, and assisting research involving large datasets. However, these NLP platforms have potential risks including fabricated facts and data security and substantial barriers for implementation. Although these risks and barriers need to be considered, the benefits for providers, patients, and communities are substantial. With these systems achieving greater functionality and the pace of medical need increasing, integrating these tools into clinical care may prove not only beneficial but necessary. Further investigation is needed to design implementation strategies, mitigate risks, and overcome barriers.


Asunto(s)
Algoritmos , Procesamiento de Lenguaje Natural , Humanos
19.
medRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662339

RESUMEN

Objectives: Epileptiform activity (EA) worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine feasibility of RCTs evaluating EA treatment. Methods: In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. Results: Sample sizes ranged from 500 for levetiracetam 7 mg/kg vs placebo, to >4000 for levetiracetam 15 vs. 7 mg/kg to achieve 80% power (5% type I error). For propofol 1mg/kg/hr vs. placebo 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. Interpretation: Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and assess feasibility of future trials of EA treatment.

20.
medRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693458

RESUMEN

Objective: To develop a harmonized multicenter clinical and electroencephalography (EEG) database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. Design: Multicenter cohort, partly prospective and partly retrospective. Setting: Seven academic or teaching hospitals from the U.S. and Europe. Patients: Individuals aged 16 or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous EEG monitoring were included. Interventions: not applicable. Measurements and Main Results: Clinical and EEG data were harmonized and stored in a common Waveform Database (WFDB)-compatible format. Automated spike frequency, background continuity, and artifact detection on EEG were calculated with 10 second resolution and summarized hourly. Neurological outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical and 56,676 hours (3.9 TB) of continuous EEG data for 1,020 patients. Most patients died (N=603, 59%), 48 (5%) had severe neurological disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean EEG recording duration depending on the neurological outcome (range 53-102h for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least one hour was seen in 258 (25%) patients (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least one hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. Conclusions: The International Cardiac Arrest Research (I-CARE) consortium database provides a comprehensive real-world clinical and EEG dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal EEG patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...